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1.0. Introduction

1.0.1. This is the first chapter of the first part of an extended

work dedicated to the presentation of the author's original results, as

yet unpublished, except [141, concerning the concept of information in

its most general aspects.

This work is the development of the ideas presented by the author in

his talk [15] at the Sixth International Symposium on Multivariate

Analysis, July 25-29, 1983, organized by the Center for Multivariate

Analysis, University of Pittsburgh. It was partially sponsored by the

Center and the author expresses his sincere appreciation for this to

Professor P. R. Krishnaiah and Professor C. R. Rao.

Basically, this work can be regarded as a development and continuation

of the work done in this direction by A. N. Kolmogorov, I. M. Gelfand,

A. M. Yaglom, R. L. Dobrushin, M. S. Pinsker, G. Kallianpur, between

1956-1960 as well as a continuation of the author's work between

1956-1982.

1.0.2. This chapter has an introductory character, covering some of

the necessary preliminaries for the following chapters. It is divided

in four subchapters. The first subchapter discusses the problems con-

nected with the definition of the concept of relative entropy and the

* second some elementary properties of this concept; the third presents

some additivity theorems while the fourth presents a generalization of

this concept.

At variance with the following chapters, this chapter is presenting a

number of results obtained by other authors. Because these results are

spread in various publications, some difficult to find, in various

languages, and a reference book does xiot exist, they are presented here.

N
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It is to remark that some of the original proofs of those results are

exceedingly difficult to follow, some representing only indications how

the proofs should.-go, some are complicated without any reason, some

contain non-necessary restrictions. Some results are given completely

without any proof.

For all those reasons the author is presenting here complete straight-

forward proofs for all the results discussed; sometimes the results

are presented with better proofs, sometime with new proofs, sometime

the results themselves are bettered. The comments at the enc of the

chapter will indicate the author's part in the proof or in bettering

the proof if it is the case.

*- The third and fourth subchapters contain mainly results belonging to

the author, some presented without proofs in [12], [13], or completely

new ones.

1.0.3. Harold Jeffreyg , professor of astronomy at the University

of Cambridge, England, introduced in literature the concept of relative

entropy-) In a paper [5] presented for publication in 1974 he defines

the quantity which in our notation is
/

h( I) + h(in:E)

'I. a measure of discrepancy between the probability distributions of
Y 4 -C:

the random variables ,l,n. the second edition of his "Theory of

probability" [6], he continues to discuss the properties and uses of

this quantity. It is to remark that he did not name in any way this

concept.

Beginning in 1951, S. Kullback started a sustained research effort,

together with various associates, to solve a series of statistical

problems with the help of this concept. [9][10]

*NI%
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Claude Shannon introduced in 1948 the concept of entropy of a random

variable and the concept of the quantity of information contained in

one random variable about another one, as basic concepts of information

theory [16], [17].

It is easy to recognize that the concept of relative entropy and the

concept of quantity of information can be obtained as particular cases

of the concept of relative entropy.

From these inter-relations, Jeffrey's concept took its name but

Jeffrey's name was forgotten inbetween.

I.l. The definition of relative entropy.

1.1.1. Let E, r be two random vectors, with the same values xi, and

let

P&(x i) P(= xi), P(Xi) - P(n - xi) (1 e. i in). (I.1.1.1)

The relative entropy of with respect to n, or of P with respect to

P , is given by the expression

n P (xi)
h(Q : n) - h(P : P) [ I, (x )log (x) (1.1.1.2)

where for a x 0 we consider Olog- -0.
a

1.1.2. Let now (a, Z, P) be a probability space, where Q2 is a set of

elements wE a a- algebra of subsets of Q, P a probability measure on Z.

We consider two random vectors F, T, defined on this probability

space, with values in the measure space (X, S,11 ), where X is a set of

elements x, S a 0 - algebra of subsets of X,1J a measure on S. Let

P (T) P{w; &(w) e T}, P (T) P{w; n(w) e T}, T E S

(b.1.2.1)

be their probability measures.

*'7 ;i:;::; :- :, ::::: :.:',":;,':::<:; .;:;:,-, -..t:.:..,.;::,::::, :;d:5". : S: :.: ,, , :::.i: :
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Let Z - UZsI be an S-measurable partition of X, i.e. a finite

family of S-measurable non-overlapping sets Z s, the union of which is X.

Let us denote by U the set of all S-measurable partitions Z of X.

For any given random vectors E,n and for any S measurable partition

Z of X, we define two finite valued random vectors Ev ')Z both with

p.. the same values s 1 1, 2, ..., k, where k is the number of elements in

the partition Z, and such that

P z(S) - P (ZS), P (s) - P (Zs) (1.1.2.2)

By (I.1.1.i), the relative entropy of E with respect to n is

k P (Z)

h(z : n Z  h(P : PZ) = I PE(Zs)log ( (1.1.2.3)
z ~Z sMI P (Z )

0
1.1.3. Lemma 1.1.

Let Pi. Q~ > 0 (1 1, ir. n) and

n n.v.- ~P =  .Pi, Q =  .Qi .131
i-i i-l

Then

n (1.1.3.2)

with equality iff

Pi W Qi (1 t i t n) (1.1.3.3)

Proof:

Let : (t) be a real valued continuous convex function, defined on

the real line; ai > 0, ti (1 < i S n) arbitrary real numbers. By

Jensen's inequality

n n
a (7 iti) a 7. Oi(ti) (1.1.3.4)

where equality takes place iff

te .iff- -%
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ti M t2  ... = tn (1.1.3.5)

Taking in (1.1.3.4)
Qi P--! @(t) =tlogt, Ci = - t - (1 _e i S n) (1.1.3.6)

we obtain (1.1.3.2), and from (1.1.3.5) we obtain (1.1.3.3).

1.1.4. Let Z, Z' e U. We say that Z' is a subpartition of Z if

each element of Z can be represented as the union of some elements of

Z'. The set U is partial ordered by this relation, which we denote by

Z' < Z. Indeed

a) Z'< Z and Z < Z' imply that Z, Z' are identical.

b) Z'' < Z' and Z' < Z imply that Z" < Z.

c) For any Z', Z'' e U it exists an element Z e U such that

Z < z', Z < Z''.

Indeed if Z' = {Z',}, Z'' {Z',), we may take Z = {Zs,,s,, with

z Z' , Z'ZS T S i t t S s it t

1.1.5. Lemma 1.2

If Z, Z' e U and Z' < Z, then
! h( z : n Z).I h( z, nZ,) (1.1.5.1)

aProof: Suppose Z consists of elements Z e S (I : s c n) and Z' consists
S

of elements Z', e S ( I s' : n') (n C n').
5

Let

zK- U z', (1 s n) (1.1.5.2)
I...,L

where L s is some subset of 1, 2, . n', so that L, L are not over-

lapping if s - t, and the union of all L is (1, 2, ... , n'). Then

P (Zs) - p (Z,), p(Zs) = ( P (Z',) (1.1.5.3)
's s'eL s'_L L

¢8

a •
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From Lemma I.1 it follows that

P (Z;,)
P (Z',) S'E

se P(Z")og ~ [, 8 P (Z'ilog z,

P (Z)
P (Z )log ssSn 1154

so that

P (Zf)log S p (Z Ps )log (1.1.5.5)

s-l s'eL P (Z',) s-i P (Z)

or

*n' P (Z'') n P (Z)
~P (Z')log 5 s I P (Z )log s(1.1.5.6)

s P (Z',) s-i P (Z)
n s n

i.e. (1.1.5.1)

Definition 1.1. The quantity

riE: ) = sup h( rz n) (1.1.5.7)

4... is the relative entropy of E with respect to ni, or of P with respect

to P

Theorem 1.1. For arbitrary random vectors E, n

with equality if f

Proof. If E~, n are finite valued, let us consider the result in Lemma I.1.

with Pi P E (xi), Q1 M P ri(xi), P - Q - 1. So from (1.1.3.2) it follows

1.1.5.8 and from (1.1.3.3) it follows P (xi P P(xi (1 -- i : n).

From Definition 1.1. follows the result in (1.1.5.8), (1.1.5.9) in

general.



7

1.1.6. In what follows, we will need the following result, in which

we denote

E 0 = (E - E0)U(E0 - E).

Lemma 1.3.

a) If XK (1 < k : r) is a sequence of a-finite measures on an algebra L

which generates the a-algebra S, then for any set E e S for which

Xk(E) < - (1 < k S r) and for any positive number e >0 there exists a

set E 0 L such that

X(E A E0 ) < (1 < k < r). (1.1.6.1)

b) Moreover, if (1 : j < m) are non-overlapping sets belonging

to S, then

1k m( ) E A (a E )J < me, (1 £k i r) (1.1.6.2)

Proof. We prove first the above lemma in the case r = 1, and we

denote AI = A. The proof of this case is performed in two steps.

The first part of this proof repeats that of Theorem D pp. 56 in

[4]. We reproduce it here for the necessity to use the intermediary

results for the second part of our proof. Because E e S, it follows

A(E) = inf{ 11(Ei); EC UE, Ei L; i = 1, 2, ... } (1.1.6.3)
i-l i=l

so that it follows that there exists a sequence {E i of sets in L such

that

E C U Ei (1.1.6.4)
i=l

and

X(UE XA(E) + (1.1.6.5)
~i=1

02

- .- - -... .
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Since

n 00
lir X( UEi) = I(UEi) (1.1.6.6). i-l i=l

there exists a positive integer N such that for any n > N, considering

the set

E0  U Ei (1.1.6.7)i=l

it follows that

XC(U E) (E + (1.1.6.8)

- Obviously

E0  L. (1.1.6.9)
00

Because
'4

X(E - EO) £ (U E - E0 ) X X( Ei) - X(E0 )C. (1.1.6.10)
i=l (. .

n 0
X(E o - E) X(U Ei - E) K X( L)i - E) =0.. i=l l

i1

= X(C Ei) - X()
i=l

it follows that

X(E A E0) = X(E - E0 ) + X(E0 - E) £ 2 + 1 = (1.1.6.12)

i.e. (1.16.1)

The second part of the proof uses these results. Indeed, let us

consider m non-overlapping sets E e L (1 c j m). Then from (1.1.6.7),

(1.1.6.8) it is possible to find for each E" " a sequence {Ei } of

sets in L such that

SE ) C U E() (1.1.6.4')
i=l

I, %
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and

AX( U SX( (1. 1. 6.5')
)- 1 2(

and obviously, because EuDr E~k k), we can find sets EQ so
i

that

Ee E~k r (Q k); e, r =1, 2, .. ;j, k =1, 2, M..

(1.1.6.13)

But from (1.1.6.6) it follows

n 0
lrn X( EJ E{) X ( E Q)/ (1 < j :i m) (1.1.6.6')

and so it exists a positive integer N. such that denoting

n
E Q) U Q (1.1.6.7')

0 il

for any n > NJ then

X( < () + (1 :r j ir M) (...1 X( 0  2

Let

N =max N (1.1.6.14)
l~ mj

From (1.1.6.7?) it follows

m Q)= n w. Mi 11..

*j.1 i-l j=l

From (1.1.6.5') it follows that

* ~~ ~ ~ EX(E' ) + M2 1165'

and from (1.1.6.13) this inequality can be written as

(m tm Q) S

X( jU E, ~A U E )+ m- (1.1.6.5'..)
di-l j-1 J.2

From (1.1.6.8') it follows that

m ~ Q m Qi) +(1168'

J -1 i-i J=1
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and from (1.1.6.13) this inequality can be written as

X( UUE ) (X( U E) + ME (.1.6.8'')

i-i J-1 i.-0i

Obviously,

U E0  e L (1.1.6.16)
J.-1

From (1.1.6.8''') it follows that

x- U EO ) SX(U U E ' UEO~
j=1 j=l i=l j-1 j=l

) =X( U z U )) _W ( ll ME

4 =l J-1 j.1

(1.1.6.17)

* From (1.1.6.5''') it follows that

X(U U i - U ) X(U UEJ)) - X( ) ME

J=l j=l i-i ii l j=l

(1.1.6.18)

From (1.1.6.17), (1.1.6.18) it follows that

X[( U I E(j)) A ( E J))] _ me (1.1.6.19)
] L j.=1 j-1

so that our lemma is proved for r =1. In order to prove it for r > 1,

let us consider in the above results

r
x - I x (1.1.6.20)

K-1

From

Xk(E) - X(E) (1.1.6.21)

it follows the general result stated in the Lemma 1.3.

1.1.7. Lemma 1.4.

Let V be some finite measure on (X, S) and A, B E S. Then

%'Q,

I A. -"" "' ," ; --" " """".". . -- " ' " -""'' ' " -" ." ' - - " ,.- .. '' .- <
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[(A) - u(B)I 5i 'A A B) (1.1.7.1)

Proof. Because

1 (A) - U(Afl B) + u(A - B)

1U(B) - .(An B) + u(B - A)

it follows that

U (A) - U (B) - v (A - B) - U (B - A)

so that

IU(A) - 4 (B)! U (A -B) - U(B- A)!

Sl(A- B) + ( B - A) -u (A A B)

We say that an algebra L of S measurable sets generates the a-algebra

SO if S is the smallest a-algebra such that L C S.

Theorem 1.2.

Let:

a) L be an algebra of S-measurable sets, which generates S;

b) R be a family of S-measurable partitions of X.

If any partition consisting of sets from L has a subpartition belonging

to R, then

h( ) - sup h(&z : z  (1.1.7.2)

ZeR

Proof. Let U C U be the totality of partitions Z of X, whose elements
L

belong to the algebra L of S-measurable sets, and let

h(& : n) - sup h(z :Z) (1.1.7.3)
Ze UL

where h(&z : is given by (I.1.2.3). With this notation,

hS( : n) - h(& : T) (1.1.7.4)

Similarly, let

hR(9 n) - sup h(&Z : nZ) (1.1.7.5)
ZeR

JF J'. Y.
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Let Z - {Z I be a partition of X. From Lemma 1.3, with X

X-P it follows that for any e > 0 and for all Z e Sdl < a < n)2 n S

we can find non-overlapping sets Z (Os L such that

P e(Z sA Z (O)) < C, P n(z sA z Os< e (l<sa<n) (1.1.7.6)

Let

=ZO e~), L (1.1.7.7)(0)
(0) k-i

Z k Z -O~ U Z (0) L (1 < k < n) (1.1.7.8)

(0 n0k il ()

z £ Z(~ L (1.1.7.9)
i-i

Because the family of sets Z(O (1 < s < n+1) is constituted of non-
5

overlapping sets and their union is X, it follows that Z (0) = z(0)J is
5

a partition of X with Z(O C UL.

Using the results in Lemma 1.4, it follows that for the measure P,

whih cn b Por P nwe have the inequalities

IP(Z0 )- P(Zk)I . . I P(Z~)- P(Z(O )I + IP(Z(k - P(Zk)I
(0)SP(Zk A Z (o) k + P(Z (0) kA Zk) (1 < k < n) (1.1.7.10)

Obviously,

(0) k-l
%Zk A _ U Z(OAil

1=1
k-l k-l

() [Zok- U zOi = ) Z )z
(-Z - O~ 1- )1 i=l Z(O)i (O)k

We will show that

() kZ0 ~C ZA

Indeed, let us decompose Z as
(0) i

Z (O) i -(zi fz (O) i U3 (Z (0 ) - Zi) (1 < i < n) (1.1.7.13)

04
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So that
k-i [k-i l[-
U Z() U (Zi  z U (z - zij (l in Z(o)ji y Li-i (o)i

(i <k < n) (1.1.7.14)

Z(0) k Z(0)k) z U (Z(0)k- Zk) (l<.k<n) (1.1.7.15)

From (1.1.7.11), (1.1.7.14), (1.1.7.15), because Z (1 < i < n) are

non-overlapping, it follows that

(0) k-li k-li z
Z k Z(O)k= (U Z(0)1) n Z(O)k U ( C (0) i) (0) k - zk)

F(k- 1 k k
(U(z, 0 i -(z()kzk z i )  ( i)L i=1""(Z°k((0iZ°

which proves (1.1.7.12). From (1.1.7.12) it follows

(0) kSP(Z kO a Z (o)k) < I P(Z i a Z(o)1 ) < ke (1.1.7.16)

imi

so that from (1.1.7.10) we obtain the inequality

IP(Zu) - P(Zk)I < ke + e - (k+l) <_ (n+l)e (l<k<n) (1.1.7.17)

so that

IP(Z ( 0 ) ) - P(Zk)I < (n+l)e (1 < k < n)

IP (Z(0 ) ) -P (Zk) I < (n+l)e (1 < k < n) (1.1.7.19)

It follows that

P (Zk )) = P (Z,) + 6 ' ,k' < (n+1)- (1.1.7.20)

P (Z 0)) - Pn(Zk) + ak; 1 nk' < (n+l)E (1.1.7.21)

and consequently,T k  I(zO)o P(z(O)) P (Zk) ____________

kT(= - P(Zk) log ,k , (P (Zk)+d ) l (Zk) g,k k., <P' (Zk° )  n (k) k. ,k_

1 ~ ~ 1+ & k r,

P .(Zk) r P(Z,) ____(_ k )
. (Z)log F(Z) I P (Zk)+6k log + log P (Zk)

k r k) E kjk P n (Zk) 6 n~k
Pn,(Zk)

Ili ( Zk ) 1+e:_ P(k
-P (Zk) log - (P (Zk) + 6 k ) log - k + 6k log P&(Zk)k Pn (zk) k ,, 1-- n k  ,k Pn (Zk)

4(1.1.7.22)

," .S ," - ' -
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where

fleL (1.1.7.23).. , ¢,k = P (Zk) ; n~ Pn(Zk)

l+__( P (Zk) (.7

1k - p (z( °) ) log + (n+l)e log PE(Zk) (I+e.7.24
ln, k

Let us denote

M - min { min P (Zk); min P(Zk)} (1.1.7.25)
1<k<n l<k<n

Considering the case h( :n) < it follows M > 0. Let us denote also

e= n +-M (1.1.7.26)

Then

IF- < P(Z) < (n+l) = e (1.1.7.27)

< Pnn i < .n e.) (1.1.7.28)S,kl <P (Zk) (

From log x < x-1 it follows

log + < +F- = i ,k (1.1.7.29)
n,k n,k n ,k

from which it follows

log _ < -. k STI,k < ~i+ enk
log l+enk 1 + Slk - nk (1.1.7.30)

and from (1.1.7.28) it follows

1 - l I - e (1.1.7.30')

so that with the help of (1.1.7.27), because e < 1, it follows

<+~ 2ee 2ee
log l+ek l-ee l-e (1.1.7.31)

,nV

6,%,, S,' , ," " , - . e - ., # . - , - , - . . " - " - , ' " , " . ' " - c ," ,
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N so that from (1.1.7.24) we obtain

ITj k log I'NC 1+ (n+l)e log k (Z

< -+ (n+l)e log <f ( le) + (n+l) e flog -a.e.

kM
(1.1.7.32)

where

a -L-+ (n+l)ejlog MI (1.1.7.32')

Consequently,

1 Tkj k 1 ITk! < nae (1.1.7.33)

which can be written as

(0) (0 P(Z
0 p P(ZS log ()P (Z ) 1o -- < a

s-i Pz ~ -i ~(1.1.7.33')

From
nn (...4

p (U zi) A (U Z(G)i] e 11..4

because

n -
U zi
i-i

it folows for PP orP -P . that

nnAP(X A1 U z -) P(X- U z() < F- (1.1.7.35)
i-i i-i

or from (1.i.7.9)

(0)
P(Z'n~) (1.1.7 .36)

i.e.

p (0(O) < vP((0)) (1.1.7.36')

Let us denote

(0) P (z(0))
T P (Z0) log n+1
n+1 n+i F (z 0) (1.1.7.37)

n n+1

eS
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so that from (1.1.7.27) and (1.1.7.36) it follows that

1T12~I - Plog (Z (0) -
[T~ ~ ~ ~n+l P((0)lgL + < ejiog 1I eilog

n1 P(z(0O) M
T)1+1 (1.1.7.38)

Let nlP 7(O~

h(9Pl ( (0)) Po (Z.10))9

h(o): fl 0 O) = M j P sZ ) log (0) (...9
Z' ~ ~ 1 s- (

n P E(Z S)
h( T P E(Z alog P (Z) (1.1.7.40)

s-1 n1 s

so that
n

ME(0: 0 ) -h(E 1.1 z IT k+ Tn (1.1.7.41)

z z k-i

so thtfrom (1.1.7.33), (1.1.7.38) it follows
n

* h(9 (0 ): 1' (O) h(CZ z )l Ik 1 T + IT.+I < (na + Ilog MI) e

(1.1.7.42)

Consequently, h(E z(0) . ( ) is as close as we want to h( z : n z ), if

the last one is finite, if we take e sufficient small. If (1.1.7.40)

is not finite, then (1.1.7.39) will be as large as we want, taking e

sufficient small.

Consequently, to any partition Z e U - U s, it corresponds a partition

z UL such that (1.1.7.39), (1.1.7.40) are as close as we want, so

that from the definitions of h S(&:n), h.LjE:n) it follows that

h S(E:n) < hL(E:n) (1.1.7.43)

From this, because any partition with elements in L has a subpartition

in R, it follows from (1.1.7.3), (1.1.7.5), that

ht(&:fl) < h R ( :fl) (1.1.7.44)

Because U LO USP U RC U S it follows

hL(E:T1) < h S(&:fl) (1.1.7.45)

hR(&:t1) < hS(E:n) (1.1.7.46)

From (1.1.7.43), (1.1.7.44), (1.1.7.45), (1.1.7.46) it follows that

hL(&:fl) - hR(&:fl) - hS(E:fl) -h(E:n) (1.1.7.47)

*which proves theorem 1.2.
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Consequently, in the definition of h( :n) instead of considering all

. measurable partitions in US, we may consider only the subclass R.

For example, in the case when X is the real line and S the a-algebra

of all Borel sets in it, it is sufficient to consider only the class

R of partitions with elements in the algebra of finite unions of

intervals. In the case when X is the cartezian product XI,...,Xn of

n real lines and S is the a-algebra of all Borel sets in it, it is

sufficient to consider only the class R of partitions with elements

in the algebra of finite unions of n-dimensional intervals of the

form Alx...XA n, where Ai is an interval on the real line (I < i < n).

1.1.8. Theorem 1.3

In order that the relative entropy of E with respect to n be finite,

it is necessary that the probability distribution P be absolutely

continuous with respect to the probability distribution P.

Under this condition, the relative entropy h(E:n) defined as the

supremum (1.1.5.7) over all partitions of the range of E and n into

a finite number of sets measurable with respect to Pr and P is

equal to the following integral

h(E:n) = f a :,(X) log a:n (x) Pn(dx) (1.1.8.1)

x

.where a :C(x) is the Radon-Nicodym derivative of P with respect to P

Pi & (dx)
*a :n P (dx) (1. 1l.8.2)

b-b

In this integral representation formula, the integral exists in the

- sense that the integral over the set where the integral is negative

converges. In particular, h( :n) is finite or not according as this

['" integral is finite or not.

l; .
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Obviously, the integral representation formula can be written as

h( - J i (x) PE(dx) (1.1.8.3)

where X

i E (x) log a : (x) (1.1.8.4)

is the relative entropy density of PE with respect to P In the

particular case that the propability measures PV, P are defined in

terms of densities (x), 7r (x) with respect to P, the integral
T)

representation formula reduces to

h(E:n) = r(x) log Lx--. dx (1.1.8.5)

X

where the integration is on p-measure, and

6 •(x lr (x)
a (x) (x) (1.1.8.6)

Obviously, in the particular case that X is a countable space of

elements x. , and P, Pn are given as (I.i.i-1), then from (1.1.8.2)

it follows

a (x ) - E(.1.8.7)
.:n i Pn (xi)

and from (1.1.8.4) it follows

P T(xi)

and the integral representation formula reduces to (1.1.1.2) with n

Proof of theorem 1.3

First part of the proof. If P is not absolute continuous with respect

to P , then there exists a set B e S such that P (B) > 0, P (B) 0.

Considering the partition Z E U consisting of the two elements

Z B, Z X-B, it follows that

2 P (z)
h(Ez: ) - s PE(Zs) log P (z s (1.1.8.9)

is not finite, and so is also

h(&:)- sup h(z: inz) (1.1.8.10)
ZeU

-6 - -
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Second part of the proof. Let us consider that P is absolutely con-

tinuous with respect to Pn"

In what follows, let P be some probability measure on the real line,

such that cc

SP(du) = 1 (I.i.8.11)

0

If p(u) is some convex function on [0,-), Jensen's inequality gives

f 4(u) P(du) < ( u P(du)) (1.1.8.12)

0 0
Let

*(u) = -u log u (1.1.8.13)

Then

0 4€"(u) = -( < 0 (0 < u < w) (1.1.8.14)

so O(u) is convex on (0 < u < -), and from (1.1.8.14) it follows the

inequality

j (u log u) p(du) > [f u P(du)] log[ f u P(du)](I.1.8.15)
0 0 0

Let T e S, such that P (T) > 0. We define the measure PT on S by the

relation

P T(A) - P {[x; a n(x) e A] / x e T), A C S (1.1.8.16)

where the bar means conditional probability. Let f(u) be some Borel

measurable function on [0,-). Then

f(u) PT(du) rf (U). P {[x; u < a:(x) < u + du] n T}=

0 0

f f [a (x).P (dx) (1.1.8.17)
P (T)

T

C.%
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If f(u) =1, from (1.1.8.17) it follows that

CO

fP T(bc - T)= P (T) =1 (1.1.8.18)

0

i.e. the measure P Tis a probability measure.

If f~u) =u. from (1.1.8.17.) it follows that

J~ (x (T J Wnx.P (dx) =p()(1.1.8.19)

0 T

If f(u) =u log u, from (1.1.8.17) it follows that

ulog u. P (dx) =a, Cx) log a,:() C ,d
f T P n(T) :nx.Pd)

0 T

= -CT ( log a Wix)] P (dx) (1.1.8.20)
TiT

0 From (1.1.8.5), because of (1.1.8.19), (1.1.8.20) it follows

1~~~~~~ 1 lga x] PCx (T)

P (TY. [lo a:T (X) C d) T) log PC(T)

or

P()log E C f lo a~ Cmx)] P E(dx) (1.1.8.21)-2n T) T
*Now, let Z sbe elements of some partition Z of X. With T =ZP from

(1.1.8.21) it follows

P (Z) r
P (Z log (E ) < [log a Cx . P(dx) (...2

Ti zs

and consequently

h( :n P (Z ) losg [log a W1.~' P (dx)=
s PC~Z) s

f J(log a,:Ti(x)l. P,(dx) (1.1.8.23)

x

so from (1.1.5.7) it follows

h(&:Ti) < f (log a~ Em(x)] . P ECdx) (1.1.8.24)

x
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Third part of the proof.

Because

lim(x log X) = 0, urn P {X; [log a (x)f > I= 0 (1.1.8.25)

it followR that we may chose s 0 so small an then take 1- > 01 so

large that

<pE{X; Ilga :n x > k}) log P E{x; [log a EmxW1 > k}< 0

(1.1.8.26)
But

{X; [log a E~n(x)I < k} = {x; e-k < a :n (x < e k (1.1.8.27)

Let Z (1 < s < n) be such disjoint sets in S, that
s

V.. n
a) U Zs {x; [ log a (T, W 14 k (1.1.8.28)

S-1

3b) log e -log M <~ (1 < s < n) (1.1.8.28')
s 5

where

s UP{a~ Emx); x E Z5} s n = inf{a E:n (X); X E Z s (1.1.8.29)

Let us define the set

= {x; log a,:,(x)I > kc) (1.1.8.30)

so that
n+l

U z =X (1.1.8.31)
s=l

and consequently Z (1 < s < n-tl) form a partition Z~o of X.
5

obviously for any s such that 1< s < n,

p(Z) = a,,,(x) P,(dx) < es. fP,(dx) =es.PT(Zs) (1.1.8.32)

z. z

pE (Z s aE:T(x) P,(dx) > mn. f PT(dx) =ms.Pn(Z ) (1.1.8.32')

z z
5 5

%

~2
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Similarly

log a:(x)l.P (dx) < [log e ]P (dx) = (log e ).P (Zs) (1.1.8.33)

zZs Zs

f [log a (x)l.P (dx) > F [log mslP (dx) = (log ms ).P (Zs) (1.1.8.33')

z z
s s

From (1.1.8.32), (1.1.8.32') it follows

P (Z)
m < < e (1.1.8.34)
s - P (Zs) - s

and from (1.1.8.33), (1.1.8.33') it follows

_ f (x)]P (dx) < [log e ].P (Z S) (1.1.8.35)[logms].P(Zs) < [log at :n s-- s

z
S

From (1.1.8.22), (1.1.8.35) it follows

P (Z) r
P(Z log p (Z) log a :T(x)].P,(dx) < (log es].P (Zs) (1.1.8.36)

P TZZ
s

so that from (1.1.8.35), (1.1.8.36) it follows

eP (ZsP (Z) log P(Zs) [log a (x)].P (dx) < [log e 1.P (Zs) - [log ms].P (Zs)

(log e - log ms).P (ZS) (1.1.8.37)

From (1.1.8.34), (1.1.8.36) it follows similarly

P (Z) log s [log a,:,(x)].P,(dx) > [log es].P,(Zs) - [log ms].P (Zs )

(log e - ).p (Z) (1.1.8.37')

From (1.1.8.37), (1.1.8.37') it follows the inequality

P (Zs) 
!P (Z log T (Zs) log aE: (x).PE(dx)I< (log es-log m).Pe(Zs); (1 <_ s < n)

ns zs
(1.1.8.38)

"7. - °''%.-.-,..-. 'L -.. ,.' ' - ,- "- .' "< , ".",-. ." ' ' '-.2 "."/ ' ' - , " -.. ' ' . ". .-.
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from which it follows

n P (Z)
, P (ZZ) log S Zs (dx)

s P(s=l Pn lan
U z
S=l

I [PZ (Z lor

s i [ ( l (Z s) log a (x).P (dx)

n" P(Z) S

I P (Z) log S Z log a (x).P (dx) <
s 1 s p Tj(Z)s f T

z
s

n n n
-(log ms) P&(Z s ) < S '-P(Z s ) =.P( U Zs ) <

S1 - login-)i m Z) - -l'P s1l -2

So

n P (Z)

~sil P (Z5 ) log P() f log a,: T,(x) .P(dx) L~ (1.1.8.39)

ss

* x.z n+l

From (1.1.8.26) we obtain

P (Z )~
7 < P (Z ~)log P (Z+1  < p~ (Z1~ 1  log (1.1.8.40)

2 n~ &r~ ~l p( n+1)

* From (1.1.8.39) it follows

n p (Z)
SI (Z ) log log a%:W (x).P (dx) (1.1.8.41)

2 ~ ~X - Zn+

S'" p) (ZnZ l )

From (I.I.8.40), (1.1.8.41) by addition, it follows

n+l P (Z) r
-E" (Z l ) ( log a (x).P (dx)

s1- TI S
* x~zn+l

or
n+1 P (Z)
S(Z log > log a (x)P (dx) e (1.1.8.42)

- - p (Z ) f:-

X-Zn+

or

h( 0) z() log a .p(dx) -E (1.1.8.43)

X-Zn+l

4.:

- . . . .. .- .. ..- -
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from which it follows

h( :) - uhznz>h( z(0): z(0) ). [log a,:,(x) ].P (dx) -E

> f ZU z z(1.1.8.44)

and if k E- s 0, we obtain the inequality

h(E:n) >flog a Emx).P E(dx) (1.1.8.45)

x

From (1.1.8.24), (1.1.8.45) it follows (1.1.8.1).

If the integral (1.1.8.1), let us make the substitution

or

x x a~ -1 (u) (1.1.8.46')

This transforms the integrand in

u log U (1.1.8.47)

and the measure P n(dx) is transformed in some measure L(du). So,

(1.1.8.1) takes the form

jA (u log u)L(du) (1.1.8.48)

Let us denote

f(u) =u log U. (1.1.8.49)

obviously

{U; f(u) < 01 ={U; 0 < u < 11(1.1.8.50)

From

df_1 + log u (1.1.8.51)
du

*it is seen that f(u) has a minimum value for u =e ,and so

Nf(u) > f(e) -e' (1.1.8.52)

so that

uj o u.L(du)> f-e. L(du)--e 1.L([0,1I) > -e- (1.1.8.52)

0 0

from which it follows that the integral in (1.1.8.1) converges.
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1.2 Some elementary properties of relative entropy
N.

,%. 1.2.1 Let us consider that the random vectors E,n are taking values in

the measurable space (X,S). Let us consider also another measurable space

(X,S) and let f(x) be a S-measurable function defined on (X,S) with

values in (X,S). The compound functions

S(w) - f(E (w)), n(W) - f(-(w)) (1.2.1.1)

are random vectors with values in (X,S).

Let

P (T) - P{w;E(w) e T}; P n(T) - P{w;n(w) e TI; T E S (1.2.1.2)

P (T) = P{w; (w) E TI; P() = P{w;-n(w) c TI; YE S (1.2.1.2')
E n

Theorem 1.4 For any random vectors ,nr, and any function f,

h(f:n) < h(E:n) (1.2.1.3)

with equality if f exists a.e.(P + P ).

Proof. Let Y e X, so that

T = f-1 () = {x C X; f(x) E TI (1.2.1.4)

Because f(x) is S-measurable, it follows that if T e S, then

T = f-l (Y) S and

P E(T) = P {x;x e TI = P {x; x e f) = P_(T) (1.2.1.5)

P CT) = P ){x;x e TI = P_ {x; x e TI = P_(T) (1.2.1.5')
rn fl

From the relation
k k

f-l U Ti)= U f- (.) (1.2.1.6)
i-l i=l

ifT T e S (l < i < k) it follows that Ti f (Ti) (1 < i<k); also if
i

n n
U Ti X, it follows U Ti = X. Also from
i=l i=l

f-lCT1 -"T2) = f-(T 1) - f-(T 2 ) (1.2.1.7)

it follows that if Tl( T2  0, then TIf T2  0.

- .
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From the above it follows that if Z I Z is a partition of X, then

Z fC (z) -{Zs I with Z f C (Y ) is a partition in X.

Let us denote the totality of such partitions Z - f 1 (Y) if X by R,

all partitions of X by Us$ all partitions of R by U_, so that R C U
* S

and U S R U(U S - R).

From (1.2.1.5), (1.2.1.5') it follows

_ _ = P(Z_) loP Pc(Z ) log P (Z z Z
-~~ ~ z C ~ (Z ) ~ sn s Z)=h~~z

So

h(~)= sup h(E2:n2) = sup h(e rj : ) (1.2.1.9)
C U_ Ze R

A and

h(C:n) = sup h(C n = max{sup hCz: sup (z Tz
Z e U ZeR ZeU -R

S S

=max{sup h(C :n~) sup h (C z: n z max{h(C :n) ; sup (z:n IhC:)
*e Z-§ e U Ze -R ZeU -R

which proves (1.2.1.3). In the case when the inverse functionf

exists P C+ Pn a.e., we can change the roles of C,n with TIT, obtaining

the inequality inverse to (1.2.1.3) so these both together give us the

equality.

Obviously the above result remains true in the particular case when

MT,) is identical with (X,S); of particular interest is the case when

f is a linear function, and let

=f(C) - A&, Tn f (in) =r M.

Theorem 1.4'. h(A&:An) < h(&:ri) (...

with equality if A is not singular.

This theorem is following from Theorem 4, but it can be obtained also

from the fact that the integral representation (1.1.8.1) of h(E:n)
,-

does not depend on the system of coordinates in the vector space X.

........... ~
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Theorem 1.5 if C converges in distribution to C and n nto ni, then

h(C:n) < Lim h(C :n, ) (1.2.2.2)

Proof. From Definition I.1 it follows that

0
1 if h(C:n) < -, for any e > 0 it exists a partition

z=Zc U, such that

h( nz> h(E:n) - e (1.2.2.3)

2 0If h(E:n) - ,for any N > 0 it exists a partition

z - UZ e U, such that

h(C z I ) > N (1.2.2.3')

Becasue Z e U, it follows that for any Z sbelonging to Z, in both

cases 1~ , 20

urn P'~ (Z) P (Z ); ur P (Z ) P (Z )(1 < s < m) (1.2.2.4)

n- E Es n n 3 T

%...
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*From p (Z)

h( Z:~Z P (Z )So (1. 2.2. 5)

n
m P C(Z )

h(E -z n P &(Z s) log P Z( .2 _

N ~~it follows l P (z)
m (lmPE( s

lim h(Cn 2 :nn2  I [lim P~ (z5) log 1 ~ n (Z)I
r>0 n Z i=ln n &n s iPTI(s

n-*M n

m P E(Z )
> (Z log (Zs) = h(EZ:riZ) (1.2.2. 6'

Obviously,

h(En:r = sup h( 0)1 () > h( n :jn ) (1.2.2.7)
z(0 )~u nZ nZ

*From (1.2.2.6), (1.2.2..7) it follows

1lim h(Q :71 > 1lim h(~ :nZ) = h( j (1.2.2.8)

i.e.

1V From (1.2.2.3), (1.2.2.8) it follows

lim h( n :nrn) > h( :n) -(1.2.2.9)

for any e> 0.

20 From (1.2.2.3'), (1.2.2.8') it follows

jrn h(E :n n > N (1.2.2.9')

for any N > 0.

From (1.2.2.9) it follows (1.2.2.2) in the case h(E:n) < and from

(1.2.2.9') it follows

lrn h(E :n - (1.2.2.10)

* in the case h(&:n) - ~i.e. (1.2.2. 2) So the theorem is proved.
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1.2.3. Let us consider two sequences of random vectors En n  taking
n

values in the measurable spaces (X,Sn ) (n - 1,2,...) so that the

random vectors E(n) . (Ell .(n) . 01.... nn are taking

values in the measurable spaces
n

(x(n),s(n)) = X (Xi,S i ) (n = 1,2,...)
i=l

with elements x(n) e X(n) and the random vectors E = ...

n = (Il,...) are taking values in the measurable space

(XS) = X (Xi,s i)
i=l

with elements x c X. Obviously x(n )  .(Xl .... X n ) e ((n ) x ... E X

Theorem 1.6

lim h(E(n ) :n(n ) = h( :n) (1.2.3.1)
n+-

Proof. For any x (n+l) . (Xl,...,..,Xn+l  X (n+l) it corresponds an

(n) . X(n ) thsorepneei.
element x = (xl,..,xn) E (n. Let us denote by Fn this correspondence, i.e.

F (X(n+l)) . x(n) (1.2.3.2)
n

(n+l) (n)
is a function with domain X and range X n

. Consequently for

&(n) (l..,n)' E(n+l) l nn+l takes place the relation

F n (E = (n) (1.2.3.3)

From (1.2.1.3), (1.2.3.3) it follows that

h( n  > h(& :n n ) (n = 1,2,...) (1.2.3.4)

r)(n (n)

So that the sequence h( (n): ) is not decreasing and consequently

lira h( (n) (n)

does exists.

6nq°

O
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Let us denote

1. M - the totality of all sets of the formin W Wj
T- X Zi x X e S - X Si (1.2.3.6)

i1 J-n+l i=1

where Zi . Si, Zi # xi (1 < i < n). (n = 1,2...)

2. L - the algebra of all finite sums of sets belonging to M.

3. r(T) - n for T in (1.2.3.6)

4. M- the totality of sets T e S of the form (1.2.3.6) with

given r(T) = n.

5. Ln - the algebra of all finite sums of sets belonging to Mn .
n6. uL - the totality of partitions V of X with elements in L.

7. UL - the totality of partitions V of X with elements in L

~n
8. UM - the totality of partitions V of X with elements in M.

* 9. U - the totality of partitions V of X with elements in M.

M ni

0. n) - the totality of sets of the form

(n) n (n) n
T X Z cS e X Si (1.2.3.6')

iffl i=l

11. U(n) - the algebra of all finite sums of sets belonging to M(n).

12. U - the totality of partitions V(n) of X(n) with elements in L(n ) .
L(n)

1. U - the totality of partitions V(n) o X(n) wt el mn s nM(n).

M 
0

14. R = U UM • (1.2.3.7)
n=l n

It is obvious that

1*. L generates the a-algebra S.

2". Any partition V £ UL has a subpartition V0 F UM .

3° . Any partition V e UM has a subpartition V0 e UM for some value
n

of n, because the number of elements in V is finite, i.e., any

partition V e UM has a subpartition V0 c R.

qV.
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Consequently, from 20 and 30 it follows that any partition V e UL has

a subpartition V0 e R and from Theorem 1.2 it follows

h(E:n) - sup h(Ev'nV) - sup sup h(v:nV) (1.2.3.8)
VeR l<n<- VC UM

n
40. L(n) generates the a-algebra S

5@. Any partition V(n) e UL(n) has a subpartition V(n) e U(n) so that
L (n) ~ (0) (n

from Theorem 1.2

h(C (n) :(n)) sup h( (n) .,(n) (1.2.3.9)
v(n)U M(n)

Let A be the one-to-one transformation established by (1.2.3.6),
.(nn

(1.2.3.6') between M and M i.e.

An (T) - T T e M, T(n) e M n  (1.2.3.10)

Obviously, A is measure preserving in the sense that
n

(n)T (n)

P (T(n)) - P (T), Pn( ) ) - P (T) (1.2.3.11)
*- (n)E(n

We can define a one-to-one correspondence B between UM  and U M(U) so thatw n

n M

B(V-V Vn, (n)n)-,(1.2.3.12)n

where V - (V s, V e Mn, (1< s < e), V(n) - sn V(n) n

(n) .(n)
Ile (1 < s < e), V - V x X Xi; i.e. A(V) - (1 < s < e).S- -- s s i- n s -- -

5 ~ i-n41

Consequently for Ve uM IF (n B n(V) U U n)

a P (V)

h(&v:nv) - P (V ) log Pv(Vs)
gu V m V s V S

-v(n)

(vn) )  _ (n) (n)
•P ( log (ME) (.31). s-i V(n) P n(n) (V s

v(n)

. - ..-. T
* c.- r .

°
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From (1.2.3.9), (1.2.3.11), (1.2.3.12), (1.2.3.13) it follows

sup h(& :nV) sup h(&(n) n(n) : )

V UM V (n) ) V(n) V(n)(
, nM~n)(I .2.3.14)

From (1.2.3.8) it follows

h(&:n) - sup h(&(n):n (n) (1.2.3.15)

and from (1.2.3.4), (1.2.3.5) it follows

sup h(E(n) : (n) = lir h( (n): (n) (1.2.3.16)
1<n<- rM

and from (1.2.3.15), (1.2.3.16) it follows (1.2.3.1).

1.2.4. If V is a signed measure defined on all T e S, a set E £ S is

0positive with respect to V if for any T e S

w(TfnE) > 0 (1.2.4.1)

and is negative with respect to p if for any T e S

iu(TflE) < 0 (1.2.4.1')

From this point of view, the empty set is both positive and negative.

It is known from Theorem A, §29, p. 121[4], that if u is a signed

measure, then there exists two disjoint sets X, X- e S such that their

union is X and so that K+ is positive and X is negative with respect

to v. They form a Hahn partition of X with respect to U.

Let Z - (Zs} be a partition of X, so that the family of sets Z= {Z+1

where Z+ - Z nx is a partition of X, and the class Z- = {ZI, where,..,. s s

-Z -z Xis a partition of X.
s s

Let S+ - S n X be the a-algebra of all S-measurable sets in e and

s S n X- the a-algebra of all S-measurable sets in X-. Also let US

be the totality of partitions of X with elements in S, US+ the totality

I of partitions of Xe with elements in S+ , US_ the totality of partitions

of X- with elements in S_.

ZA-. .--.
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Let

P + M - z s (T ( Z+ i- u (T = p (TfnX+) (1.2.4.2)

Z+ CUs+S+sS

P -(T - sup I u(TfnZ-) - -(T nUzZ) = -u(T nX-) (1.2.4.3)
.Z-e U S_  s s s

* lH(T) - sup [ 1p(TrIZ s )I = sup I p(TnfZ+)-
Ze US s Z+ C Us+ s

- sup (To Z-) = +(T) + u(T) (1.2.4.4.)
+s

:" Z- F U S_  s

The set functions u , u-, lul are named positive (or upper) variation

of p. negative (or lower) variation of p, and total variation of U.

Each of them is a measure and

+
p(T) = +(T) - -(T) (1.2.4.5)

If u is finite or a-finite, so are his variations (See Theorem B, §29,

p. 123[4 ]). In what follows, we will denote

H l l = 111(X) (1.2.4.5')

Theorem 1.7. If 4l,12 are measures on (X,S), it exists a set X C S

with 42 (X0 ) - 0, and a non-negative S-measurable function a(x), such

that for any T e S

11 21- 21(T) = f a(x) - 1ii 2(dx) + 
U l (T nX0) (1.2.4.6)

T

If Ul is absolutely continuous with respect to U2 on X, (which fact we

will denote in the future by il << P2)' then X0 and

a(x) = i2(dx) (1.2.4.7)

so that

[l - 2(T) = J a(x) - 11 u(dx) (1.2.4.8)

T

ri.
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If << V9 P2 << v and 1 (X), 7r2 (x) are the corresponding densities, then

a(x) 72(x) (1.2.4.7')lrw2(x)

and

I- .2 [(T) f J7 l(X) - w2(x)l v(dx) (1.2.4.8')

T

Proof. It is known that for any arbitrary measures Ul,112, 1  - V2

is a signed measure. It is also known that it exists a set X0 E S

such that p, << U2 on X -X and

l(T0) = f a(x) u2 (dx) (1.2.4.9)

-To

where T0 C X - X0 and a(x) is an S-measurable function.

0 Consequently, for T 0C X - X0

"- 2)(T 0) U 1(T0) - 1 2(T0) f [a(x) - l]u 2 (dx) (1.2.4.10)

Because the total variation of Ui - u2 is a measure on S, it follows

that for T e S

111- 112 1 (T) L1 - 42 1 [T f(x - Xo)] + l1-U 2 1 (Tn xo)

-- (1.2.4.11)

A Now we will calculate the two elements in this sum.

The first element is

.(u 1 -U2)[TN(X- X0 )] (11 - ,,2) [Tr)(X - X 0) I + (Ul -U2 T(X- X0 ) ]

1f1 11112d- [a(x) - 2('- (Xa(x) -- x(dx)
.' (T o X n i (x- 1 2-

- f- j la(x) - 1 2(dx) + !a(x) -I u12(dx) -

T--(-x )fx+  Tfl(x - )x-00

"-"- , ja(x) -1!1 2(dx) , Ja(x) -. 1.i2(dx) + a(x) -l[u 2 (dx)

Tii(x-x) OXi(x-x)
0 0 0

I - - (x) - 11u2(dx )  (1.2.4.12)

T

V at--.. ..
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The second element is

( i1 [1(T2 fl T X0) fl '+] ++il j2)[(Tfl x ) n1 (fl 0  LJX-UX

(11 (T ()X On X1 U w(Tn x)= (1.2.4.13)

From (1.2.4.7'), (1.2.4.8) it follows (1.2.4.8'). So our theorem is proved.

Let P, nP be given. If PE << Pn , from Theorem 1.3 formula (1.1.8.1)

it follows

hQ : j) a,:(x) log aE :n(x).P n(dx) (1.2.4.14)

x

and from Theorem 1.7, formula (1.2.4.8) and (1.2.4.5') it follows

lip& -PJ p ni la (x) - 11Pn (dx) (1.2.4.15)

X
where

a W~x = P d)(1.2.4.16):n Pn (dx)

Theorem 1.8.

a) For arbitrary random vectors E ,n, takes place the inequality

11 H-p i < 2.h(E:n) (1.2.4.17)

b) For arbitrary small 6 > 0, there exists random vectors C,ri such that

I PE -p n 2  > (2- 6) h(E :n) (1.2.4.17')

so in (1.2.4.17) the constant 2 can riot be replaced by a smaller one.

Proof. In the case when P Eis not absolute continuous with respect to

pnthe second member in (1.2.4.17) is not finite, so (1.2.4.17) is

trivially true, so it remains to be proved only in the case when

P << P .In this case

p(Z) a f : a (x).P 1(dx) (1.2.4.18)

z
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a) Let us consider the function

4.
Ip(z) =z log z - z + 1 (0 < z < c)(1.2.4.19)

Because tp'(z) =log z, ip''(z) = ,it is easy to see that for z = 1

this function has a minimum p(l) 0, and is convex, non-negative, so that

()> 0 (0 < z < c)(1.2.4.19')

Let us consider the expression

2z (z12 2 lgz +12_ (_12
(z) 1-(2 + z) 4() z-) =(2 +z) (zto - l) (z1

33
(1.2.4.20)

Because

(l) =0 (1.2.4.21)

,'(z) !~(z log z-z+l) + 1(2+z) log z-2(z-l) (1.2.4.22)

=11 0 (1.2.4.23)

0 ~'(z = (z log z - z+l) =-p(Z) (1.2.4.24)
3z 3z

it follows that the function Of(z) has a minimum for z =1 and (l) =0,

and from (1.2.4.19') it follows from (1.2.4.24) that

( > 0 (z > 0) (1.2.4.25)

i.e. (z) is convex, and consequently

4(Z) > 0 (z > 0) (1.2.4.25')

i.e.

2 2
(z-l1) < - (2+z)(z log z -z+l) (z > 0) (1.2.4.26)

or

2 2(z -1) <-j(+)~jz z'0 (1.2.4.27)

or

42 3+- ) (Z) (z > 0) (1.2.4.28)

Replacing in (1.2.4.28) z -uith a (x), we obtain

(x) W 1 + 2 a :TI Wx). (a :in (x) (1.2.4.29)

30
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*from which it follows

la Wx-1.P (dx) <j (+a W). (a (x)).P (dx) (1.2.4.30):n n (f 3 3 :n :TIn

X X

From Cauchy-Schwartz's inequality, we obtain

[I e - Pn2 -- f I a (x)-lIP (dx))2

X

S4 2 ) 1 2
< 4+-a (x)) .i (x))P (dx)) <

X
f + 2  f() ' d )
< + a,:(x)).en(dx).f (a :n x)nr~d)

3 3 :~

X X

[ . P (dx) + 2 aE:n(x).PT(dx) I

X X

X X X
4 + 1 (x) log a P (x)P(dx)- + 11

(3 3 f) [ a :n E:TI n

X
= f a,:n(x) log a : n x . P ( d x)P 2 h(:n) (1.2.4.31)

X

which proves (1.2.4.17).

b) Let E be a random variable, such that it exists a set Z0 e S with

P (Z0 ) P (X Z (1.2.4.32)

Because for any Z E S

P (Z) - l.P (dx) (1.2.4.33)

Z
it follows

w(x) = 1 (x C X) (1.2.4.34)

Let 6 be an arbitrary number (0 < 6 < 1), and let us define the function

T(x) - x E Z0  (1.2.4.35)

it (x) =  + 6 X E XZ 0  (1.2.4.36)

Ti%
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Because r (x) > 0 (x e X) and
T1

fir n(x PE(dx) - 1 (1.2.4.37)

it follows that n(x) is the probability density of some random

variable with respect to the measure P .

Consequently

h(9 :n) = (x) log .x) P (dx) - log P (dx) + log P (dx)f' ' r n(x)ff1+
,p:.-. x zo X-Zo

1 + 7 log i i log 2 (1.2.3.38)

Let us consider the function

g(z) = log (1 - z)- I  (1.2.4.39)

It is easy to calculate that

n
-. a g= (n - 1) (1 z) (n > 1) (1.2.4.40)
dn, '"i dzn

So that

g(O) 0, g (n) (0) (n - 1) ' (n > 1) (1.2.4.41)

and consequently,
k

g(z) - k (1.2.4.42)elk l

2
a convergent series for JzJ < 1; because 6 < 6 < 1, and from

(1.2.4.38) we know that

h(&:n) g(62 (1.2.4.43)

and from (1.2.4.42) it follows':':"o k 2k

2h(:) 1 k (1.2.4.44)
k-i

G - 2k.,u,.-,s2 h( :r) = 62+ +
k (1.2.4.45). k-2

- Also from (1.2.4.5'), (1.2.4.8') it follows that

11P- P I I f I 7r(x) - Tr(x) .P (dx) 11 -,(I - 6)[.P (dx) + [i- ( +6)1 . P  ( d x )

x z x-z0
6 0

6-- +- - 6 (1.2.4.46)

2 2
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From (1.2.4.45), (1.2.4.47) it follows that

2h() - - 2 2 k  
(1.2.4.47)

2 hE~ I 1P~ T il+ k!2k

So, from (1.2.4.46) we obtain

2. 2k 2

(2 -6) h(Q:T) -IIP -P 2  12-- 2k 2

® 2k 3

k=2 k 2 (1.2.4.48)

If 6 is sufficient small

- 2k 3(1- ) = < L (1.2.4.49)

k-2

so that from (1.2.4.48) it follows
3 3 3

(2-6) h(W :) -IPE -P i < T - T" - T6 <0 (1.2.4.50)

Consequently for ,n as defined above, (1.2.4.17) is satisfied.

1.2.5. Theorem 1.9.

a) If &,n are given random vectors and p = p 0 (0 < p 0 < 1) satisfies

the relation

h( :n) + h( :n) 2 plog P (1.2.5.1)
lp

then

I IJP - P ni < 20 (1.2.5.2)

b) Between all pairs of vectors with the same value of

h(E :ni) + h(E:n) (1.2.5.1')

it exists a pair EOTnO such that

lIP o- P no 2p0 (1.2.5.2')

so that the relation (1.2.5.2) cannot be improved.

Proof.

a1) It is easy to see that

F(p) 2p log (0 < P < 1) (1.2.5.3)

I-
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has the derivative

F'(p) - 4  + 2 log 1(I.2.5.3'
1 

(2-.
2 1-)

Because F(O) - 0, F'(p) > 0 (0 < p < 1), it follows that F(p) in the

interval 0 < p < 1 is monotonously increasing and has range [0, +m).

More than that, it can be written as

00 2m
F(p) - 4. 1 P (1.2.5.4)

r-i 2m-1

from where it is also seen that it is increasing. Consequently, for any

value of the constant J, the equation

2p log l+P= j (0 < J < ) (1.2.5.5)
i-p

has exactly one solution.

P = P(J), 0 < p(J) < 1 (1.2.5.5')

Given the random vectors , n, we define the value of J 0 by

1 0 h(E:n) + h(:rn) (1.2.5.6)

a2) Denoting by

P0  P(Jo0 ) (1.2.5.6')

the solution of the equation (1.2.5.5) with J - J0 9 let us denote

2p2 Jo+2a i+" 0  20
a- 2- 0 log i-p- + 2 (1.2.5.7)

i-p 0  1- 0

We will prove that the inequality

T I z- < (Z-l) log z + a (z+1) (1.2.5.8)

is satisfied for all z > 0.

J If (1.2.5.8) is satisfied for a value of z, it is satisfied also for 1 because

* i1 1 1
s o wi 1) log wt+ g(1. 8+.1) (1.2.5.8')

is another manner of writing (1.2.5.8).
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If z < 1 i.e. z -1 < 0, then obviously,

-- 1-> 0.z z

Consequently, in order to verify (1.2.5.8) for z > 0, it is sufficient

to verify

'r(Z-l) < (Z-1) log Z + cx(z+1) (1.2.5.8"')

for z < 1.

Let

(z) =(z-l) log z + (a-T)z + a + T (1.2.5.9)

From (1.2.5.7) it is easy to calculate

a o ;G+T-1P +log l+ 0 (1.2.5.10)
log 1-Pp 1-p

so that (1.2.5.8'") takes the form

=() (z-1) log z + P log 0  
2P0) (f log (P1.2.5.11)

7+- 0 0O

so that

( -log z 1 1-p0  log ' (1.2.5.11')

-- 1+P 1-

z Z

ALet us find a solution z0of the system of the two equations

~(Z) = 0, W~(Z) - 0 (1.2.5.12)

The equations can be written as

-lp 2p +p0(z-l) log [z (- -) ]- (z - -- )=0(1.2.5.13)
1P0 1p0 1P0

zlog [z lT-) -I1+ - z - - ) -0 (1.2.5.13')
1O-p0 (z -po

and it is obvious that they admit the common root

1+Z l >p 0 (1.2.5.14)

4~1-P
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Because the function O(z) has a minimum zero for z given by (1.2.5.14),

because

0(+O)= 0(+) (1.2.5.15)

and because from (1.2.5.11'') it is seen that O(z) is convex for z > 0,

it follows that O(z) > 0 (z > 0), i.e. the inequality (1.2.5.8'') is

satisfied, i.e. the inequality (1.2.5.8) is satisfied.

a3) Let us replace in (1.2.5.8) z with a (x), so we obtain

3~

*TIa:, W - 1 ( (x) - 1) log a, :(x) +a(a (x) + 1) (1.2.5.16)

and by integration on P over all X,

T . lf - 1I.P (dx) < (aE:(x) - 1) log a (x.P(dX) +

X X
@p

+ a( (x) + 1).P (dx) (1.2.5.17)
fn
x

Now it is easy to calculate

f (a .(x) - 1) log a (x) Prn(dx) = f a (x) log AE :n(X)Pn(dx) -

x x

-f log aE:n(x)P (dx) = h(:n) + f Pn (dx) log a (x).P (dx)

x xX XfP (d) lg a :/ ( ) logx

h(E:n) + f an:)(x) log a, ::(x).P (dx) = h(e:n) + h(n:E) = J0  (1.2.5.18)

x

Also

f (a n(x) + 1) P n(dx) a f~ W~x P n(dx) + f P n(dx)i
X X X

f P n (dx) PI(dx) + I P(dx) + 1 2 (1.2.5.19)

x x

From (1.2.4.15) we have

J a (x) - 11 P (dx) P (1.2.5.20)
X

' - "-' _ L ' ' .' ' . " . 4 " - " . . . -"- .- . - . -- . - .I . . ","."• .". .- ; -..x .

S, - , ' , . . - % . - ° - ,- . - ,- . . .- . . . j , . $% . . . . . %
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With the results (1.2.5.18), (1.2.5.19), (1.2.5.20), the inequality

(1.2.5.17) can be written as

T IIP - P 11 < J0 + 2a (1.2.5.21)

and because of (1.2.5.7)
Jo+2o

I P- P i< = 20 (1.2.5.21')

i.e. (1.2.5.2).

b) Let us consider two random variables &0,n0, both taking the values

XlX 2 only, with probability given by

P (x1  P (x 1 (1P) x P( =1-)
&0 = o(X 2 ) 0 &0 (x 2 ) = P x) - (I-o 0 )

(1.2.5.22)

Then (P 0 (x1) P (x2 )

h( 0 :n 0 ) = P (Xl) log p0X ) + P 0(x 2 ) log pn0(x2

0o no(x 1 ) 0oT 02

I 0 log l+Po (1.2.5.23)

so that

J0 = 2p0 log (1.2.5.24)

which proves the last statement of the theorem.

1.2.6. Theorem I.10.

If ,n are two random vectors and e > 0 arbitrary, then

pE{ji :n W) > e} < iP& - Pn 1__L_ (1.2.6.1)

with i :n (x) given by (1.1.8.4).

Proof. Let

( I i (x)Il•z I262
A {x; Ilog a :n (x) - j :n > (1.2.6.2)

A {x; loga (x) > e}; A2  {x; log a (x) < -C}

(1.2.6.3)
So

A- A1 U A2, Af A2 = 0 (1.2.6.4)

•A 7

"Is

. *. . . . . . . . . .
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Because

e > log (1 + c 1265

it follows that

1, - {x; log a,: (x) > e}C {x; log ac T(x) > log (1+e)1

{x; a :(x) > 1 + CI ; a (x) <

-=c

-x; 1 >a(1.2.6.6)

) a, Wx l+C X a x l+e

Because (1.2.6.5) can be written as

e > 1 + e (1.2.6.7)

'" " and
"'" - - (1.2.6.7')
" -e < I e

it follows that

A2  {x; log a (x) < -CI in{x; C < log a: (x)

WCx > edi Lx; W > 1+C
.,C :T

1 11

- {x; -C 1 a C {x; 1 - a (x) } (1.2.6.8)

From (1.2.6.4), (1.2.6.6), (1.2.6.8) it follows that

A = AIU A C: {x; I 1 > U X; 1
1 2, (X) 1Cm-2a Wx 1+ce

{x; l1 > =K (1.2.6.9)

From (1.2.6.2), (1.2.6.9) it follows

P {x; ji : (x) > e} < p (K) (1.2.6.10)

Let

N { Lx; a x)= 01, X - N = {x; a Cx) # 01 (1.2.6.11)

*so that

P (N) " a W(x) P (dx) , 0 (1.2.6.12)

N

-.

" ' % " "% -.% ' % '%' ",, ",,'- "w ,,'w . . . . . . ,% - ," - -' " " , ' , ' " " ' , " " " .." - .- • ,
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Let us denote

K - K nl (X-N) (1.2.6.13)

so that

K - (Kfl N)U K1  (1.2.6.14)

From (1.2.6.12), (1.2.6.13), (1.2.6.14) it follows that

P (Kf N) - 0 (1.2.6.15)

P (K) = P (Kr0N) + P (KI) = P (KI ) (1.2.6.15')

because from (1.2.6.12) and K C N it follows

P (K) < P(N) = 0 (1.2.6.12')

Taking into consideration (1.2.6.10), (1.2.6.15') it follows

IIp~ pj ni fa Ean(x) - il~pn (dx) > la J (x) - lh.P (dx)-

x K

l , Ian(x) - 11a (x) " Ai a 1.(x) I.P (dx) > - (dx)

K K1  K1

S. p . e l- "(K) > .. P{x; 1> (1.2.6.16)

i.e. (1.2.6.1).

4.. 4 . 44
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1.3. Additivity theorems

1.3.. Let (S iEiPi ) be a probability space, where 01is a set of

elements w i; E a a-algebra of subsets of Q i; P i - a probability measure

We consider the random vectors E% n i = 1,2), defined on these

probability spaces, with values in the measurable spaces (XiS i), where

xis a set of elements xi, Si a a-algebra of subsets of X.

*Let (QZ = (OE x (a 2'E2 ) be a measurable space, where a2 is the set

of elements w = (w 1 ,w 2 ), W 1 el S11W2 E: 2' and E = E 1 x2

Let P be a probability measure on Z with marginals P on Z. i (1 1,2).

So (ilj,,P) is a probability space.

0 We consider the random vectors

1 l(Wl1), E2 (W 2)), (n 1 (W 1)' Y2 w2))(131)

defined on the probability space COE,P) with values in the measurable

-. space (XS) = (X1,5 1) x (X 2 '52 ), where X is the set of elements

x~ - xI x C X1 , and S= S1 x S2

Let

P (T. = P i{W i; Ei (W i e Ti).1, T i e~ S i =( 1,2) (1.3.1.2)

P (Ti = {W n(W) e Ti)., Ti e (i =1,2) (1.3.1.3)

be the probability measures of the random vectors ~ l(i1 1,2) and let

P (T) - P{(w1 ,w ); (E (W1) 2(W )) e TI, T e S (1.3.1.4)

P no (T) -P{Cw 1,w 2); (n 1(W 1), n*2(W 2 ) e TI, T E S (1.3.1.5)

- . be their joint probability measures.

0

ttj - . . '>.~*.40
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Lemma 1.5.

If P 2 is absolutely continuous with respect to Pn n then

a) P is absolutely continuous with respect to P I P is absolutely
1El 'n P 2

continuous with respect to P , and

b) P 1 (.Ixi) is absolutely continuous with respect to P. 1j I (.Ix 1 )

(P - a.e).

c) Moreover, if the Radon-Nicodym derivative of P with respect

to P is
n,,n 2  P E2 (dx1dx2)

a (Y12) : (nl 1n2)(XlX 2 ) = Pnl 2(d 1 dx 2 ) (1.3.1 6)

then the Radon-Nicodym derivative of P with respect to P is

P6 (dx "  i1
1

a 1 :n (x) P(dx) f a (&E2):( n2 )(XlX 22 Pj (dx 2 1 xl )

1 ~ X 2 (1.3.1.7)

P - a.e.), the Radon-Nicodym derivative of P 2 with respect to P 2 is

P2 (dx 2 )

a E2:72(x 2 ) 2 ) [ a (12):(n2 ) (x l x 2 ) Pnln 2 (dxljX2 )

2 (13.18

(Pn2 - a.e), and' the Radon-Nicodym derivative of P 2j1 l (. x l ) with

respect to Pn2lnI (.ix I) is

1) (212 a ):nl (xl'x) P I 211(dx 2 x l )

(1.3.1.9)

(P a.e).

Proof. From (1.3.1.6) it follows

P 2(T) , f a(12): )(Xl'X 2).Pnn (dxldx2 ) (1.3.1.10)

T
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so that if T = T X X T E SI. from Fubrini's theorem it follows that
,1 2' 1 1

"""I. I'q~
d l

" P(T 1) P1 2(T1 x X2 ) f a(, l2)-(nln2)(Xlx 2) 2 P2 1 l(dx21Xl)] P', dxi1

T1 x2

a El M (x1) p (dxl) (1.3.1.11)

T

where a (xl) is given by (1.3.1.7).

Similarly, if in (1.3.1.10) we take T= X T T2  S2 , it follows in

the same way

-.' P ( = Ia (xI (~l ]P2d2
p P2 (2 l2 (Xx T2) f a(, 1 2 ):(nlq2 ) x1  x2) Pn21 (dx1 ix2)) P(dx2)

T 2 x 1

SJ a&2:n2(x 2) pn 2(dx 2) (1.3.1.12)

T 
2

0 wherea2 :n(2(x2 ) is given by (1.3.1.8).

The relation (1.3.1.10) can be written as

T T

(1.3.1.13)

and using (1.3.1.7) we can write it as

[P 2 (dx2 
x l ) a (xa) - ( Pn (dx2 1 )] P = 021 1'[ 21 l:nl 1a( l&2 ) : ) ( 2) (X '2) T2 , 2 x ) n

' " T
T (1.3.1.14)

for any set T E S x S so that

PE2 & 1 (dx2 l x l ) a 1 :nl(Xi) - a(El2):(nl n2 )(XlX 2) Pn 21l(dX2 x1 ) = 0

(1.3.1.15)

(P.1 a.e.). Consequently, denoting
a(61 2): (1 2 (xl'x 2 )

a (E21) :(n21n) (XlX 2) a (1.3.1.16)

a :l

o"s .
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we obtain

P dxj a g)(jl (x2x ) Pl 1  (dxl (1.3.1.17)

(P a.e.). From (1.3.1.17) it follows

P j (TI 1  f a( 1 )(l 1  (x1 tx) P 1  (dx~i 1  (1.3.1.18)

i.e. P~1  (.1x 1 ) is absolutely continuous with respect to P (.1x)

(P a.e.), *with (1.3.1.16) as the Radon-Nicodyn derivative.

Let us now denote

i (x) log a (x) i (x)= log a (x) (1.3.1.19)

i =EY ( 1)x9 log a)C(x 1 ~x 2) (1.3.1.20)

=C1l:n1l lo a( 2ki:(n2I 1) x~ (1.3.1.21)

Lemma 1.6. In each of the relations

a ( 1 2 :( 1 2  (x1,X 2) a i:M 1(x1 ) a ( 2Y 02n f ) (xlx 2 ) (P na.e)

(1.3.1.22)

i (Y :n1 2 lX2 1:n 1 (x1 + i ( 2 1Y)(T'2(x 1 )X 2 ) (P T a.e)

x 1 ,x 2  i Cx(1.3.1.23)

if two of the quantities are finite, then the third one is also finite

* and the relation is verified.

In the case that the random vectors E1 0f1 are independent, and the

random vectors E2,n2 are also independent, the relations (1.3.1.22),

(1.3.1.23) take the simplified form

a Y2:nn)( g 2)=a C1: ( . a& 12(2)(1.3.1.22')

i ~ ) )(x 1 ,X ) . i (x) + i (x) (1.3.1.23')

(n0 n 1 E:

1' 2.4211
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Proof. The equality (1.3.1.22) follows from (1.3.1.9) and (1.3.1.23)

follows from (1.3.1.22), taking into consideration (1.3.1.20), (1.3.1.21).

The relations (1.3.1.221), (1.3.1.23') follow from the relations

(1.3.1.22), (1.3.1.23), taking into consideration that in the conditions

I~4. of independence indicated in the Lemma,

a a(E2E):(n2(x.X 2) a E2: (x 2) (1.3.1.24)

= x$ (x) (1.3.1.25)

Let

h[(E21x1 ):(nIx 1) = f a(Ej):y ~(x'x 2) log a(lx2)

2 ~~(1.3.1.26) (xj 1

=[E T f h[(E2 x)(iI 1 ]P (dx1  (1.3.1.27)

This is the relative conditional entropy of the ordered pair of random

vectors El'E2 with respect to the ordered pair of random vectors n'2

Lemma 1.7.

a) If two of the three quantities in the relation

=lEE)( h(E1 ~ 2  + h[( 2 1 :n2 n) (1.3.1.28)

are finite, then the third one is also finite and they verify

* this relation.

b) In the particular case where El' 2 are independent and T2are

independent, the relation (1.3.1.28) takes the simplified form

h[E=):nT h(E :n 1 ) + h(& :n 2  (1.3.1.28')

Proof. Because of (1.3.1.22), we obtain

a aEl:r n T1)(x,x 2 ) log a (,rr : (,l'2(x,x [a El*j1(x 1 )log a l1(x 1 )]

-a 2Y 1 2I(1 Xlx 2 + [a ( 21&1.(n 1 T') (xPX 2) loga 2Y n2r1 X9

-a . (x 1 (1.3.1.29)
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and we take the integrals of both members on P -measure over Xx X2
TI n1 21 2

* -From (1.3.1.26), (1.3.1.27) it is seen that the integral of the left

hand side is hE1 )( 2

Let us consider now the integral of the first term of the right hand side.

We obtain from Fubini!s theorem and from (1.3.1.9)

( a (x1 )log a (x1) a(~~*n )(X~ 2  P (dx dx2)

112 P~~d 2 1 x1) n1T

X XX
122

[ f a~ (x 1  log a 7 .( 1)(x 9 fP P(dx 2 x ) n!l(x2x)P1x1

= Ja~ :~(x) log a ~f (x ).P (dx) = h(j 1 ) 1...2'

Let us consider now the integral of the second term of the right hand

side. We obtain from Fubini's theorem and (1.3.1.7), taking in

consideration (1.3.1.26), (1.3.1.27), that

log~~ (dxdx)

logl 1(d

[a21 1 ) (n 1 r) 2 ) a(E 21) (n 21 Txl1) 2) P n(dx1

P (dx~ 1  P(dx 1 )

= fP(dx) (a( (X~ log a( )( )(X1 Ix)I P (dxj 1

X2

=fh[(E 2 x)( 2 I 1 IP (dx)= h[( 2 ~)(r 2 n) (1.3.2.29'')

xl

* which proves our Lemma 1.7 part (a). Part (b) follows from part (a)

taking into consideration (1.3.1.25).
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1.3.2. Let: (SiEi) be a measurable space and (oi, iPi) a probability

space, where 0 i is a set of elements wit Zi a a-algebra of subsets of

Q' Pi a probability measure on Zi (I < i < n).

We consider the random vectors Ei, i, defined on this probability space

with values in the measureable space (Xi,Si) where X is a set of

elements xi, Si a a-algebra of subsets of Xi (1 < i < n). Let

A C {l,2,...,nl, (1.3.2.1)

and
(n ( A zA ) = X (n i i )

ieA

be a measurable space, where A is the set of elements wA {wi i e A)

and EA = X E V• i A
ieA

In the particualr case where A = {l,2,...k}, we denote wA = w(k),

QA =  (k) EA = E (k) (1 < k < n). Let PA be a probability measure on

Z A with marginals Pi (i e A). So (QA,ZAPA) is a probability space.

We consider the random vectors A(wA), nA(wA) given on the probability

space (A' EA' P ) by

A(WA) = (Yi); i e Al; nA(wA) ={n (w i) i E A} (1.3.2.2)

with values in the measurable space (XA,SA) = X (Xi,Si) where

A' A-i ieA

-. x = {xi, i e A), with x r X (i e A), are elements of X andS = X S.A i i i A A iAiicA

If A = {1,2,.. .,k}, then we denote x = x(k) = x(k) A (k)
A ' AA =

(k)

Let

P (T PT i £ S i  (1 < i < n) (1.3.2.3)

'(Ti) Pi i; n{w ( Ti, Ti S (1 < i < n) (1.3.2.3')

be the probability measures of the random vectors (1 < i < n)

%

%.~Aw'
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and let

P (TA) PA{WA; A (WA eT TA eSA (1.3.2.4)

PnA(TA PA {A (w A e T A T A esA (1.2.3.4')

Lemma 1.8.

If P (n) is absolutely continuous with respect to P (n) and the Radon-

Nicodym derivative of P (n) with respect to Pn(n) is

P (n) (dx (n)

a (n) n)(xn) = P(dn , (.2.3.5)
: P (d )

n

then we will prove the following:

(a) for any A C {l,2,...,n}, the probabilizy measure P is absolutely

continuous with respect to P and the Radon-Nicodym derivative of P

with respect to P is given by the relation

n , fA a (n) (dx J) (1.3.2.6)a~A(A) I a ( ) :n~ n  ) "P 1 n A

where Pn!'n A is a conditional marginal measure of P (n), and

A = {1,2,...,n} - A.

(b) for any AC{l,2,...,n}, A2C{1,2,...,nl, A1 fn A2 = 0, the probability

measure

PEA 21Al (.Ix A) (1.3.2.7)

(conditional marginal measure of P ) is absolutely continuous with

* ~&(n)
respect to the probability measure

P (IX (1.2.3.7')

SA2  A1, A

(conditional marginal measure of P ) and the corresponding Radon-(n)

6%
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Nicodym derivative is
( A A A2(XA A

a 2  1 A2 I Al A2 ) aCA, :n (xA)

SC A 2 leAl(dxA 2 X Al) (P a.e.) 
(1.3.2.8)P nA InA (dX A 2IXAl1)  A

= PA 2  A1  2 1

Proof.

(a) Let us consider the result (a) in Lemma 1.9 for

E = E =A; l -- nX, 2' = A (1.3.2.9)

where A C {1,2,...,n}, A = {1,2,...,n) - A. In this case

P P () P in = P Tn)(1.3.2.10)

and because P (n) is absolutely continuous with respect to P (n)' it

follows that P is absolutely continuous with respect to PA . The

relation (1.3.2.6) follows from (1.3.1.7).

(b) Let A1 ,A2 be two mutually exclusive subsets of {l,2,...,n} so that

A, U A is also a subset of the same, so from part (a) above it follows

that P is absolutely continuous with respect to P

Let

n'= nA I  n n hA (1.3.2.11)
1 2 2

so that

P A 2 P A2  12 = PnAIPP (1.3.2.12);'';V 'i.2 2 2 A1A .A 2

From Lemma 1.9(b) it follows that

p (. A (1.3.2.13')
n 2  1A

."~ The relation (1.3.2.8) follows from (1.3.1.9)

The Lemma is proved.

S$ i , t ."? < i . ;'2 : -- i , ' - .- - - - . . x .: .'. > / . -. , . .. -. ' . , . '.'.'.'. ,.,
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In what follows we will be particularly interested in the case where

A2  - Wid, A. - {1,2,...,k-1} (1 < k < n) so that E A (-A2 k '

From Lemma 1.8, it follows that

P k (.x k - )) (1.3.2.14)
k-1

is absolutely continuous with respect to

P (-IX (k-1) (1.3.2.14')~(k-1)
nkn

(Pn(k-l) - a.e.) and the corresponding Radon-Nicodym derivative is
P (-)(dx k[ x(k-l))

ak1E -) ) ( k ln k - )
x k )  =d k [ (k - l

PI= n(k-l) (dk x )

-n (1.3.2.15)

Let

i (x(n)) log a (x(n) (1.3.2.16)E n)(n) E(n), (n)

i(Qk-k):(nkInk-l)(xk-l'xk) - log a(Qjk-k):(k nk -l)(xk-lxk)

(1.3.2.17)

i n (Xk) = log a C (1.3.2.18)k k ak:flk(Xk)
-,.

(-1)):(kn-1) (x(k)) log a (k ) (k-) (k)

(1.3.2.19)

Lemma 1.9.

(a) In each of the relations
n

(n(k(n) a (k) (1.3.2.20)
a ) (n() (x  ) " 

7r(k-1))(.n l)(x (
:n kl kl ) k

(n) n (k)i (x - (- i (1.2.3.21)

if n of the quantities are finite, then the n+ l-th is also finite and

the relation is satisfied.

%. . .. .

'. - ' T ,p: :, :- ? .,-'p,,.r,5 ,.,- ,, , :. : ,= -.. , , *. ... ,"7 , - ? ,' : 1 :: . .", ,,, ,
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(b) In the case the random vectors E1(1 < i < n) form a simple Markov

chain, and the random vectors n(1 < i < n) form a simple Markov

chain, the relations (1.3.2.20), (1.3.2.21) take the simplified form

a n) (n ((n) n y ~x
a (xIr a(x x(1.3.2.20')

~~ ~k-1 (klk-l) :(nl~l~~~

S(n) :n(n) (x nJ 1 k- i(kIk-) (I)(k xl x k) (1.3.2.21')

(c) in the case the random vectors E%1(1 < i < n) are independent in their

totality and the random vectors ni(1 < i < n) are independent in their

totality, the relations (1.3.2.20), (1.3.2.21) take the simplified form

a (x (n) an( (1.3.2.20'')
E (n :T1(n)k-i k k k

n) n
* iE(n):fl(n) (x k 1 1 E0 k i (xk) (1.3.2.21"')

Proof.

(a) From the identity ()P k-)(dxkjx (k-i))

(n)) kk1

P ((n) n)) k-i P (k-1) (dx k' x (. .2

* k

taking into consideration (1.3.2.5), (1.3.2.15) follows (1.3.2.20).

From (1.3.2.20), taking into consideration (1.3.2.16), (1.3.2.19)

follows (1.3.2.21).

*(b) In the conditions of markovian dependence indicated in the Lemma,

a (k-1)(-) (x () a(, I :kfll(xk ixk

(~kI(kl) :(lkll ) '~'-1'(1.3.2.23)

i (k i ( ) (x (k)) (i~x )

(kI ):n Onf (1.3.2.24)

Consequently the relations (1.3.2.20), (1.3.2.21) take the form

* (1.3.2.20'), (1.3.2.21').

.. A.
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(c) In the conditions of independence indicated in the Lemma

a (EkIE(k-) ):(lkfl(k-1) ( () (a T)k( ) (1.3.2.23')

i (x()) (1.3.2.24')

Consequently the relations (1.3.2.20), (1.3.2.21) take the form

(1.3.2.20"'), (1.3.2.21'').

The Lemma is proved.

Let

h(QkI x(kl1)) :(nlx(kl1))]

(k) (k)
a x log (ki (x )

P I(k-i) (dx k Ix(k-1) (1.3.2.25)

=f h[ (Qkx(kl1)) :(nkI x(k-1))I PI(k-1) (dx (k-1)) (1.3.2.25')

Lemma 1.10.

*(a) If n-of the n + 1 quantities fn the relation

h(EnJ:fn) I h((QkI(kl):(fnk l)) (1.3.2.26)
k-i

*are finite, then the n + 1 - th one is finite also and the relation

is satisfied.

(b) In the case the random vectors (1 < i < n) form a simple Markov

chain, and the random vectors n (1 < i < n) form a simple Markov chain,

the relation (1.3.2.26) takes the simplified form

n 1322'
h(. (n.n() [E(.322'

kk-) nin-

0O
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(c) In the case the random vectors ( n) are independent in their

totality, and the random vectors ni (1 < i < n) are independent in

their totality, the relation (1.3.2.26) takes the simplified form

(n) nL h(C (n) :7n)" I h ( k:7 )  (1.3.2.26'')

k-1 
k k

Here we denoted

h[(&lIE(O)):(nll (O))] = h(El:nl) (1.3.2.27)

h[((i{ O ) : ( n l n 0 ) ] f h(&l:nl) (1.3.2.27')

Proof. From Lemma 1.12(b) with A = {l,2,...,k}, A2= B=k=f{k,k+l,...,n} ,

it follows that if P (n) is absolutely continuous with respect to

'[' Pn n then,(n) (.x~k(1)
(n) Pt(.Ix(k-1)) (1.3.2.28)

p- (k-1)
& Bk

is absolutely continuous with respect to

SP ki) (Ix(k)) (1.3.2.28')

for (k - 2,3,...,n). Let now

&I k ' &B ; nf 'f k n; 2 B ; Bk {k,...,n} (1.3.2.29)
kil k+1

So
% .,"- ' ff Bk  ' ' ffi Bk(1.3.2.30)2 B .I 2 , l B

and consequently from (1.3.1.28) it follows

Bh[(¢B (k ) (kl))] hB(kIn(k - l l ):(nkIn(kl l )+
k k

+ h[(B (k)):(nBkir~(k))] (1 < k < n-l) (1.3.2.31)
Bk+l Bk+l

- so that
n-1 n-l

! - ¢ k -l) (k-i (k-1) (IkT, (k-1))]+
. h[( I&(kl)):BkI(kl))]- I h[(EkIl ):(nk]+
k-i k k k=1
n-l (k) (k))] (1.3.2.321

+ I h[(% B~ ):(nB In(...2
k-l k+l k+l

oJ.
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where

T1 ? (1.3.2.33)BB

From (1.3.2.32) follows (1.3.2.26).

(b) In the conditions of markovian dependence indicated in the Lemma, the

relations (1.3.2.23), (I.3.2.24)are satisfied and this implies

hQkE(k-i) ):'(nkln (k-1)) hI(kkkl): (nklnkl1 (1.3.2.34)

so that (1.3.2.26) takes the form (1.3.2.26').

(c) In the condition, independence indicated in the Lemma of the relations

N (1.3.2.23'), (1.3.2.24') are satisfied and this implies

ah[( kj (-1)):(nkn k-1) H(E k :nk) (1.3.2.35)

so that (1.3.2.26) takes the form (1.3.2.26'1).
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1.4. An extension

1.4.1. Let , be three random vectors, with the same values xi,

and let

PE(xi) P(-  = xi); Pn(xi) =P(1-xi); P (xi) =P(Cx i) (1 < i < n)

-' (i.4.1.1)

In analogy to (1.1.1.2), the relative entropy of E with respect to n

from the point of view of C (or of P with respect to P from the

point of view of P )is given by the expression

n P (xi)
h(E:n;C) = h(P:P;P =i P (x) log p (x ) (1.4.1.2)

" ".'' 0
iP n (xi

0
where for a > 0 we consider 0 log - = 0.

a

1.4.2 Now let (Q,E,P) be a probability space, where Q is a set of

'V elements w, E a a-algebra of subsets of Q, P a probability measure on E.

4 We consider three random vectors ,n,C, defined on this probability

* .space, with values in the measure space (X,S,U), where X is a set of

elements x, S a a-algebra of subsets of X, u - a measure on S.

Let

P (T)-P{W; )W(eT}; P (T)=P{w; n(w)eT); P (T)=P{w; C(w)eT}, T e S

(1.4.2.1)

be their probability measures.

With a (x) defined in (1.1.8.2) and i (x) defined in (1.1.8.4), in

analogy to (1.1.8.3), we define the quantity

h(: = i (x).P (dx) (1.4.2.2)

as the relative entropy of with respect to n from the point of view

of

In the particular case that the probability measures P, P, P are

- defined in terms of densities n_ Ex), r nx), C(x), with respect to a

measure U, the integral formula (1.4.2.2) reduces to

h( n;lo- 1E(x) dx (1.4.2.3)

X

%



61

where the integration is on U - measure. Obviously, if C = , the

expression (1.4.1.2) reduces (1.1.1.2), the expression (1.4.2.2)

reduces to (1.1.8.3) and (1.4.2.3) reduces to (1.1.8.5), i.e.

h(E:n;E) - h(E:n) (1.4.2.4)

In analogy with (1.3.1.26) we define the quantity

h[( 21xl):(n 2 x1 l);( 2Ixl)] = f i(2k)(2)(xlx 2 ) P 2 1  (dx 2 1xl)

X 2 (1.4.2.5)

and in analogy with (1.3.1.27) we define the quantity

h[(E 2 1):(n 2 I 1);( 21 ]= f h[(C2 1Xl):(n2[x1 l:(C 2 1Xl)l PC (dx1)

(1.4.2.6)

This quantity is the relative conditional entropy of the ordered pair of

random vectors EIE2 with respect to the ordered pair of random vectors

r110 2 from the point of view of CiC2.

Lemma I.11.

(a) If two of the three quantities in the relation

h[( lE2 ) : ( n l1 2 ) ; ( I C 2
) ]  h( 1 :n1 ;C1 ) + h(Q2'E1):(n2l ) ; ( 2 I

) ]

(1.4.2.7)

are finite, then the third one is also finite and they verify this

relation.

(b) In the particular case where El',2 are independent, and nl,n 2 are

independent, the relation (1.4.2.7) takes the simplified form

h[( 1 E2):(nl1 n2);(
I 

2) ] = h(1:n 1 ;C1 ) + h(E2:n2; 2) (1.4.2.7')

Proof. Integrating both sides of relation (1.3.1.23) on P I 2 (dXldX2)

*1.% "J % ' ' ' ". ' ' q - ; . . ' ' . " .' ' ' . - q " ' ' ' j . . - "% a t . ' . ' . . - " . - . - - . - . -
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it follows from Fubini's theorem that

h[ (E i&2) :(nln2) ; (Ci 2) f i( i192) :(n in2) (XlX 2) P C2(xd )i 2(dx l dx2) -

x 12 l22

fj i n (x1  P (dx1) f P C (dx2 1xl)+
1.1 1 x 21

+ f PC. (dx1) I(,[E):() (X 1  X 2 ) P21'(dx 2Ix) (1.4.2.8)

Taking into consideration (1.4.2.2), (1.4.2.5), (1.4.2.6) we obtain

(1.4.2.7). Taking into consideration (1.3.1.25), from (1.4.2.7)

follows (1.4.2.7').

1.4.3. In what follows, we will use the concepts and notations in 1.3.2.

* Similar to the random vectors giPTi, we consider the random vectors Ci'
-. defined on the same space (SliiP i ) and with values in the same

measurable space (Xi,Si) (1 < i < n). Similar to the random vectors

A(WA), nA(WA ), we consider the random vector

CA(WA) - {Ci(Wi), i e A) (1.4.3.1)

defined on the same space (Q AEAPA) and with the values in the same

measurable space (XASA).
.'--..(k)

If A - {1,2,...,k), let A = (k"

Similar to P (T P (T in (1.3.2.3), (1.3.2.3'), we define

P C(Ti) = i{Wi; (W Ti) , Ti £ Si , (l<i<n) (1.4.3.2)

as the probability measure of the random vector Ci (1 < i < n) and

similar to PE (TA), P (TA) in (1.3.2.4), (1.3.2.4') we define
4..A A

PA(Ti) -PAA; A(wA) TA} TA £ SA (1.4.3.3)
C A

:-A
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Similar to (1.3.2.14), (1.3.2.14'), the measure

P (-IXkl
CkIC k-1)(1.4.3.4)

is a conditional marginal measure from P ()

Let

= ( J [~(k-1 ) ):(nkl)(C(k 1)~~l) kl(x

xkl (1.4.3.5)

Lemma 1.12.

(a) If n of the n + 1 quantities in the relation

h( :T ; h[(& kIE~i ):(nkln kl);( k~kl)) (1.4.3.6)
k-1

are finite, then the n +1 -th one is finite also and the relation is

satisfied.

(b) In the case the random vectors & (1 < i < n) form a simple Markov

chain, and the random vectors n.i (1 < i < n) form a simple Markov chain,

the relation (1.4.3.6) takes the simplified form

0 h(&()nn;() h[(&~ (1.4.3.6')

(c) In the case the random vectors < i < n) are independent in their

totality, and the random vectors n (1 i < n) are also independent in their

totality, the relation (1.4.3.6) takes the simplified form

(n) (n) (n))
h : gl I h( k:nkl k (1.4.3.6"')

k-l

Here we denoted h(l ())01 0 ; 1 0 )()1 )) 1

h(p.

2z4- ZzV
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Proof.

(a) Integrating both sides of (1.3.2.21) on P (n)(dx(n)), it follows from

Fubini's theorem that if B k = fk+1,. ..,n)

h[t (n) :n (n) ; C(n) ] = (n) (n) (x(n)n).P (dx(n))--

x(n)

n

= n [( Ik))k1) (k(k)(dk) (k))= . i (k-1) (TkIr (k-1) (x P (k) (d B( x

n )(k) 
() k

o t (k)t (14x.k)).p (k)((dx
"i kn x k  (k](k-1)):(kk1) k-1) )

... I h[(&k kl)(knk1)(k k1) (1.4.3.7)

(b) In the conditions of markovian dependence indicated in the Lemma, the

relations (1.3.2.23), (1.3.2.24) are satisfied and this implies

h[(&kIC(k-l)):(nkIn(k-l));(CkIk(k-l))] = h[(&k[kl ) :(nk nk -l) ;( k k l) ],

so that (1.4.3.6) takes the form (1.4.3.6'). (1.4.3.8)

""-.-.(c) In the conditions of independence indicated in the Lemma, the relations

- h[(& kl ( -l ) :(nk ln( -l ) ; (Ck k l ))  h(& k:n k; k ) (1.4.3.9)

so that (1.4.3.6) takes the form (1.4.3.'6'').

.,.

-- - .. -A?!J..:-- --
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1.5. Comments

Lemma I.1 - is a known result (See [9] page 17, Ex. 3.2) proved here

with typical elementary means. The Author has not seen this

proof elsewhere. In [91 it is proved in a complicated way

and in [1] in a most complicated way.

Lemma 1.2 - belongs to the Author; the proof uses the method used in

[3], page 203 in a particular case.

Lemma 1.3 - In the case r = 2, part a) is proved in [1]. For r > 2

part a) and part b) together with the proofs belong to the

Author.

Theorem 1.3 - is presented in [11] without proof, references being made

to a particular case in [1]. Our proof follows A. Feinstein's

remarks to Ch. 2 in [11], with many additions and clarifications.

Theorem 1.4 - is presented in [11] without proof. The proof given here

belongs to the author.

Theorem 1.4' - belongs to the Author.

Lemma 1.5 - belongs to the Author.

Lemma 1.6 - belongs to the Author.

Lemma 1.7 - belongs to the Author.

Theorem 1.7 - is presented in [11] without proof; this proof belongs to

the Author.

Theorem 1.6 - belongs to the Author.

Theorem 1.7 - can be found in [11], but the proof has been partially

changed for the sake of clarity.

Theorem 1.8 - Part a) can be found in [8]. While following the proof

of a) in [8], the Author changed the order of presentation

for the sake of clarity. Part b) represents an amelioration

of a statement in [8] , and it belongs to the Author, even

that methods from [8] are used.
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Theorem 1.9 - while following the proof in [8], the Author changed the

order of presentation for the sake of clarity.

Theorem 1.10 - follows [8], with some clarifications in the proof.

Lemma 1.5 -belongs to the Author.

Lemma 1.6 -belongs to the Author.

Lemma 1.7 -belongs to the Author. See also [12].

Lemma 1.8 -belongs to the Author.

Lemma 1.9 -belongs to the Author.

- -~*Lemma I.10 - belongs to the Author.

Lemma I.11 - belongs to the Author. See also [15].

Lemma 1.12 - belongs to the Author.
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